

Seminário Seminar

ALTERAÇÕES CLIMÁTICAS NA PRODUÇÃO DE VINHO VISÃO GLOBAL E AVALIAÇÃO DA SITUAÇÃO NA REGIÃO DO DOURO CLIMATE CHANGE ON WINE PRODUCTION GLOBAL OVERVIEW AND REGIONAL ASSESSMENT IN THE DOURO VALLEY

A Climate Assessment for the Douro Wine Region: An Examination for the Past, Present and Future Conditions for Wine Production

Gregory V. Jones Department of Environmental Studies

In Collaboration with:

∛ADVID

Association for Viticultural Development in the Douro Valley (ADVID)

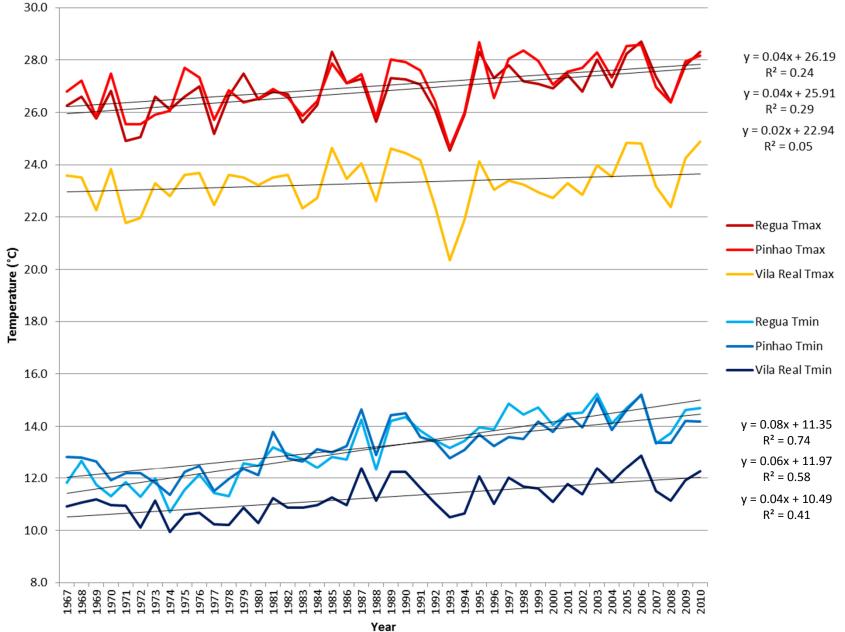

ADVID

Presentation Outline

- Overview of Climate Data for the Douro
- Overview of the:
 - Past Climate in the Douro
 - Current Climate in the Douro
 - Future Projected Climate in the Douro
- Summary and Future Developments

Overview of Climate Data for the Douro

- Long term station data for the region has been limited over both space and time
- Historic 1931-1960 monthly data accumulated by Ferreira (1965) and digitized to national contours by the Instituto do Ambiente (2002) and modified by others
- Limited stations with long term records for establishing characteristics and trends
 - Vila Real, Régua, Pinhão


1931-1960 Monthly National Data

Monthly station data of annual precipitation, temperature, relative humidity, evapotranspiration, solar radiation, etc generalized to contours, limited accuracy

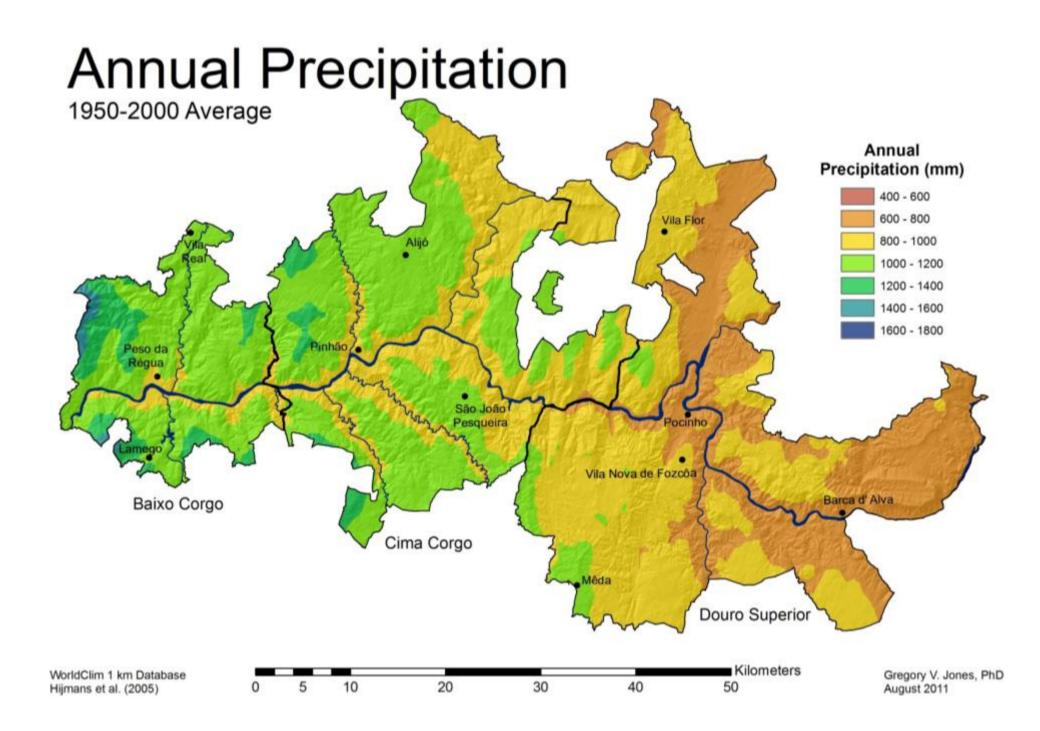
Climate Station Analysis

- Only Vila Real, Régua, and Pinhão have qualified, moderately long-term station data
- Covers 1967-2010 for Tmax, Tmin, and Precipitation
- Conducted extensive quality assessment of the data
- Used the CCI/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and Indices (ETCCDI) tools to test for:
 - Outliers (unrealistic values, bad data points, etc.)
 - Homogeneity (station moves, changes, etc.)
- Calculated 27 average and extreme climate parameters and indices for understanding climate structure and trends for each station

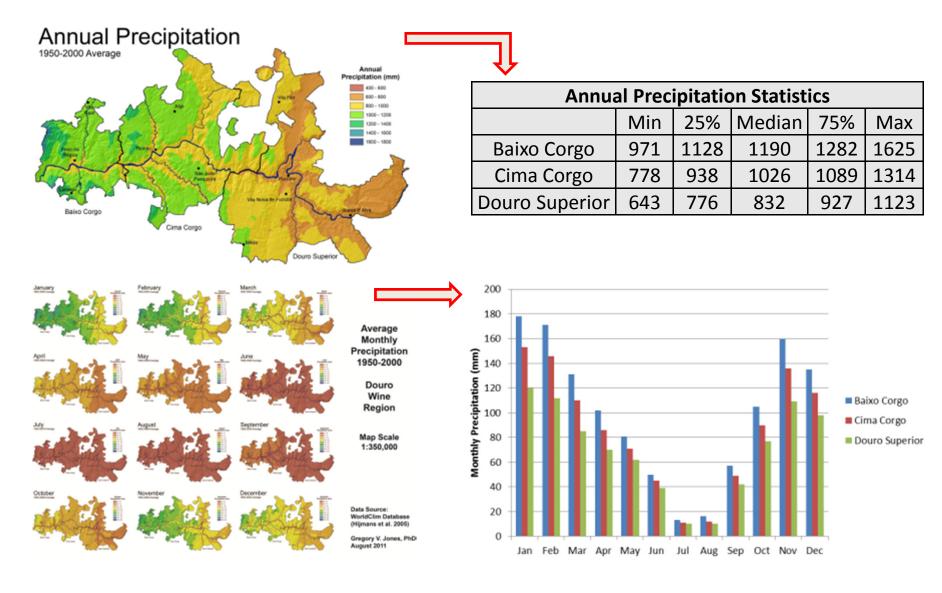
Growing Season Average Temperatures

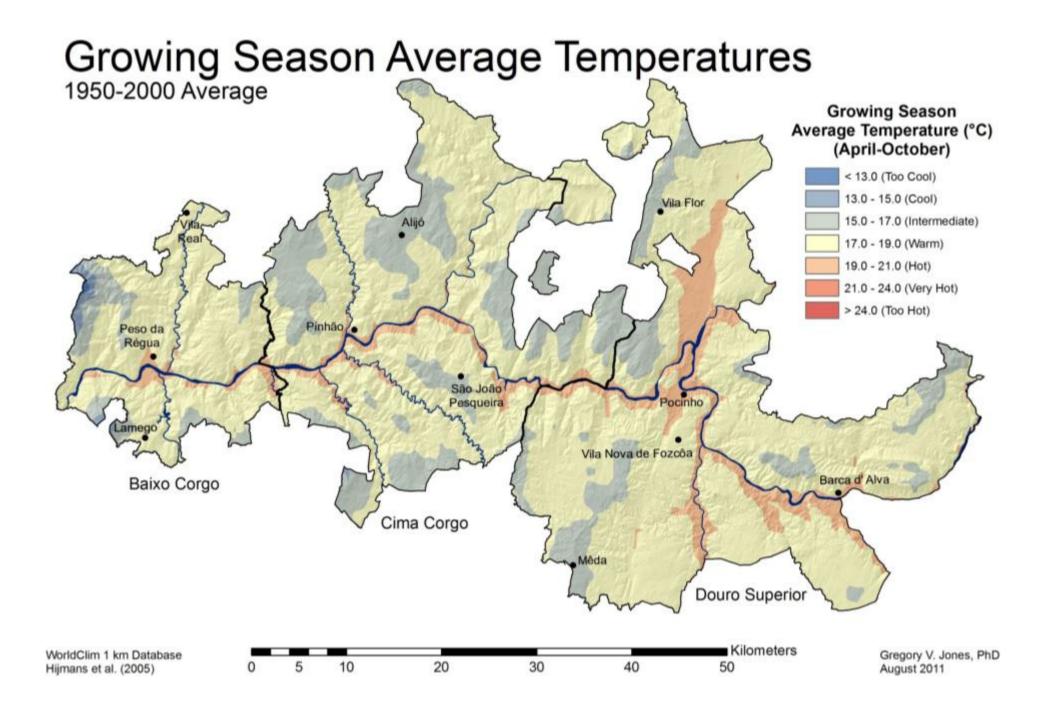
Climate Extreme Indices

ID	Indicator name	Units	Régua	Vila Real	Pinhão	Average
		Units	Trend	Trend	Trend	Trend
FD0	Frost days	Days	-18.7		-11.4	-15.1
CSDI	Cold spell duration indicator	Days	-16.8		-10.5	-13.6
SU25	Summer days	Days	25.6		20.7	23.1
ST35	Stress days	Days	18.6		16.1	17.3
TR20	Tropical nights	Days	13.4	6.1	9.5	9.7
TN10p	Cool nights	Days	-19.8	-5.8	-13.4	-13.0
TN90p	Warm nights	Days	18.9	9.3	12.0	13.4
ТХ90р	Warm days	Days	7.9		6.5	7.2
TXx	Max Tmax	°C	2.2		2.5	2.3
TNx	Max Tmin	°C	4.3	2.9	3.3	3.5
TNn	Min Tmin	°C	1.9	1.2	2.2	1.8
DTR	Diurnal temperature range	°C	-1.9	-0.6	-1.0	-1.2

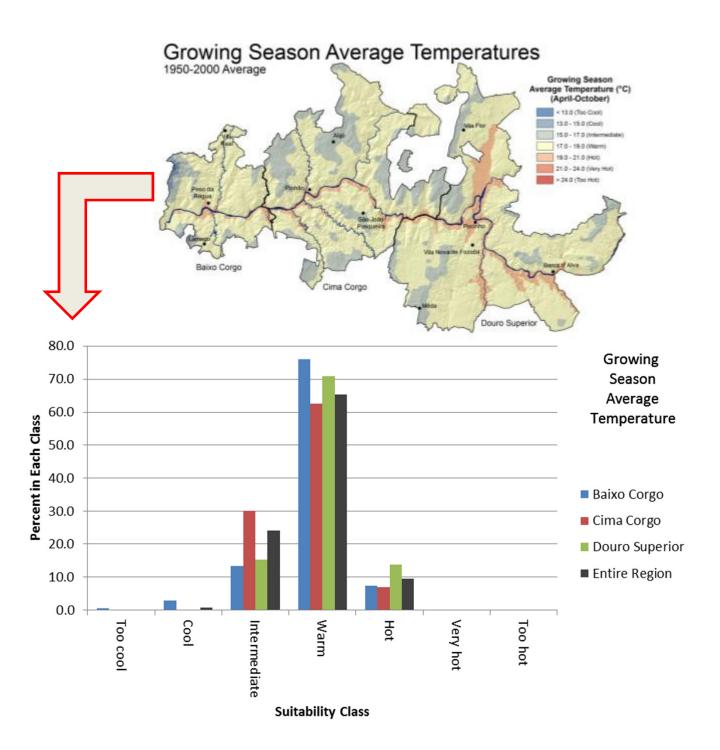

 General characteristics: higher minimum and maximum temperatures, increase in extreme temperatures, fewer cold events and not as cold, more heat stress events, and a lower diurnal temperature range

Spatial Climate Data Products

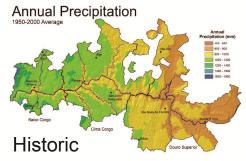

- Understanding the climate structure in wine regions helps define/understand cultivar suitability, along with wine style, production and quality potential
- Station data issues ... station location is generally not representative of vineyard locations
- However interpolation of stations using topography, known horizontal and vertical atmospheric patterns, and latitude and longitude can generate tremendous improvement in spatial climate data and understanding
- Many new spatial climate data products are now available, or being developed, at resolutions that are useful for viticulture


WorldClim Database

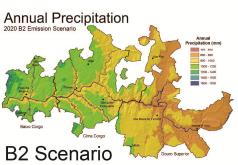
- Uses monthly averages of climate as measured at weather stations from a large number of global, regional, national, and local sources for 1950-2000
- Interpolates these data using the thin-plate smoothing spline algorithm implemented in ANUSPLIN
- 30 arc second spatial resolution (0.86 km² at the equator, ~1 km for the mid-latitudes)
- Strong cross validation and uncertainty assessment
- Further assessed for appropriate use in the Douro; correlates highly with 1931-1960 and 1967-2010 station data and ENSEMBLES E-OBS data (25 km resolution) for the region

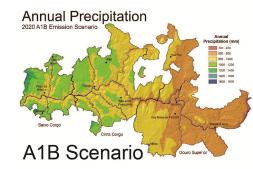


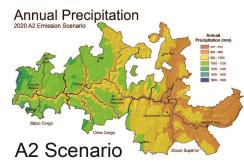
With gridded climate data one can assess not only the visual spatial characteristics of climate parameters, but also summarize the statistical properties both within and between regions

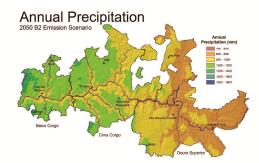


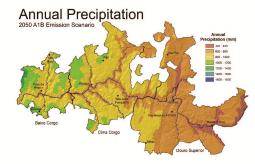
Again, with gridded climate data one can assess not only the visual spatial characteristics of climate parameters, but also summarize the area of each region that falls within certain categories of climate suitability

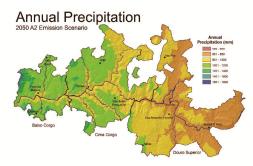

Future Projected Climate for the Douro

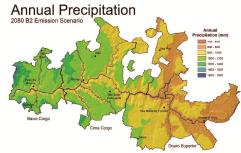

- Used downscaled GCM output from the HADCM3 climate model (1km resolution = WorldClim)
- For three future emission scenarios:
 - B2: Lower energy requirements
 - A1B: High emissions, but balance across sources
 - A2: Higher energy requirements
- Examined projections for three time slices:
 - 2020, 2050, and 2080

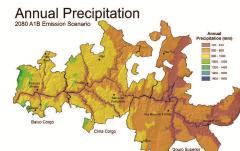



	Annual
Region	Precipitation
	(mm)
Baixo Corgo	1190
Cima Corgo	1026
Douro Superior	832


Douro Wine Region Annual Precipitation 1950-2000 and 2020, 2050, and 2080 for B2, A1B, and A2 Emission Scenarios



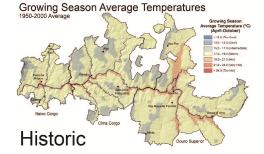




Annual Precipitation

Projected Changes From 1950-2000

	B2	B2	B2
Region	2020	2050	2080
	(%)	(%)	(%)
Baixo Corgo	-1.2	-2.2	1.4
Cima Corgo	-1.1	-2.1	1.6
Douro Superior	-1.5	-2.4	1.0


	A1B	A1B	A1B
Region	2020	2050	2080
	(%)	(%)	(%)
Baixo Corgo	-6.2	-13.2	-18.8
Cima Corgo	-6.3	-13.8	-19.5
Douro Superior	-7.2	-15.3	-21.6

			A2	A2	A2
1	Annual Precipitation (mm)	Region	2020	2050	2080
•701 K	400 - 600 600 - 600 600 - 1000		(%)	(%)	(%)
15	1000 - 1200 1200 - 1400 1400 - 1600	Baixo Corgo	-0.8	-0.5	-15.3
15	1600 - 1800	Cima Corgo	-1.1	-0.9	-15.7
ano Z	~	Douro Superior	-1.4	-1.3	-16.8
it	Barrard Alva				
				Data Sc	

Map Scale 1:350,000

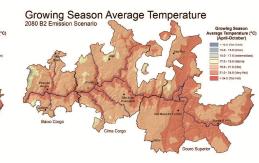
Data Source: WorldClim Database (Hijmans et al. 2005) Gregory V. Jones, PhD

August 2011

Growing Season Average Temperature

Growing Season Average Temperature

B2 Scenario

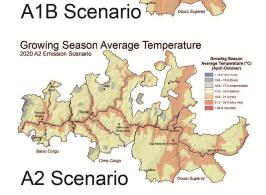

2020

Region	Median Temperature (°C)
Baixo Corgo	17.5
Cima Corgo	17.5
Douro Superior	18.0

Growing Season Average Temperature

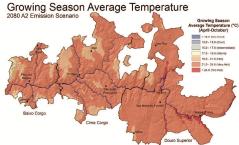
Growing Season Average Temperature

Douro Wine Region Growing Season Average Temperatures 1950-2000 and 2020, 2050, and 2080 for B2, A1B, and A2 Emission Scenarios



Projected Changes From 1950-2000

	B2	B2	B2
Region	2020	2050	2080
	(°C)	(°C)	(°C)
Baixo Corgo	0.8	1.8	2.5
Cima Corgo	1.0	2.0	2.9
Douro Superior	1.0	2.2	3.1


	A1B	A1B	A1B		
Region	2020	2050	2080		
	(°C)	(°C)	(°C)		
Baixo Corgo	1.7	4.1	6.4		
Cima Corgo	1.7	4.1	6.4		
Douro Superior	1.8	4.3	6.6		

		A1B	A1B	A1B
;)	Region	2020	2050	2080
		(°C)	(°C)	(°C)
	Baixo Corgo	1.7	4.1	6.4
	Cima Corgo	1.7	4.1	6.4
	Douro Superior	1.8	4.3	6.6

Growing Season Average Temperature

Growing Season Average Temperature

	A2	A2	A2
Region	2020	2050	2080
	(°C)	(°C)	(°C)
Baixo Corgo	0.6	1.9	3.7
Cima Corgo	0.8	2.1	4.2
Douro Superior	0.8	2.3	4.6

Map Scale 1:350,000

Data Source: WorldClim Database (Hijmans et al. 2005)

Gregory V. Jones, PhD August 2011

Summary and Future Developments

- General station trends in the Douro Wine Region show:
 - Higher minimum and maximum temperatures
 - Increases in extreme temperatures
 - Fewer cold events and not as cold
 - More heat stress events
 - A lower diurnal temperature range
- Gridded spatial climate products give a sound representation of Douro Wine Region climate structure, better than typical station comparisons

Summary and Future Developments

- Future projections for the Douro Wine Region, over three different emission scenarios, indicate a range of growing season <u>warming</u> of:
 - 0.8-1.8°C by 2020
 - 1.8-4.3°C by 2050
 - > 2.5-6.6°C by 2080
- A range of annual precipitation <u>decreases</u> of:
 - 0-7% by 2020
 - 0-15% by 2050
 - ➢ 0-22% by 2080
- With a greater reduction in precipitation during the growing season than during the winter

Summary and Future Developments

Douro Wine Region

- Already warm and dry with heat and water stress in most years, small changes in climate may push regional climate thresholds sooner than other regions
- Large genetic potential and adaptive capacity
- Large landscape potential and adaptive capacity

Future Work

- Continue to develop the understanding of spatial climate structure and range of observed and projected changes
- Further develop plant, production, and quality models
- Assist ADVID, growers, producers with strategies to reduce vulnerability and increase adaptive capacity

Thank You!

Seminário Seminar

ALTERAÇÕES CLIMÁTICAS NA PRODUÇÃO DE VINHO VISÃO GLOBAL E AVALIAÇÃO DA SITUAÇÃO NA REGIÃO DO DOURO CLIMATE CHANGE ON WINE PRODUCTION GLOBAL OVERVIEW AND REGIONAL ASSESSMENT IN THE DOURO VALLEY

